Local-aggregate modeling for big data via distributed optimization: Applications to neuroimaging.
نویسندگان
چکیده
Technological advances have led to a proliferation of structured big data that have matrix-valued covariates. We are specifically motivated to build predictive models for multi-subject neuroimaging data based on each subject's brain imaging scans. This is an ultra-high-dimensional problem that consists of a matrix of covariates (brain locations by time points) for each subject; few methods currently exist to fit supervised models directly to this tensor data. We propose a novel modeling and algorithmic strategy to apply generalized linear models (GLMs) to this massive tensor data in which one set of variables is associated with locations. Our method begins by fitting GLMs to each location separately, and then builds an ensemble by blending information across locations through regularization with what we term an aggregating penalty. Our so called, Local-Aggregate Model, can be fit in a completely distributed manner over the locations using an Alternating Direction Method of Multipliers (ADMM) strategy, and thus greatly reduces the computational burden. Furthermore, we propose to select the appropriate model through a novel sequence of faster algorithmic solutions that is similar to regularization paths. We will demonstrate both the computational and predictive modeling advantages of our methods via simulations and an EEG classification problem.
منابع مشابه
An Architecture for Security and Protection of Big Data
The issue of online privacy and security is a challenging subject, as it concerns the privacy of data that are increasingly more accessible via the internet. In other words, people who intend to access the private information of other users can do so more efficiently over the internet. This study is an attempt to address the privacy issue of distributed big data in the context of cloud computin...
متن کاملA harmony search-based approach for real-time volt & var control in distribution network by considering distributed generations units
In recent decade, development of telecommunications infrastructure has led to rapid exchange of data between the distribution network components and the control center in many developed countries. These changes, considering the numerous benefits of the Distributed Generators (DGs), have made more motivations for distribution companies to utilize these kinds of generators more than ever before. ...
متن کاملDISTRIBUTED AND COLLABORATIVE FUZZY MODELING
In this study, we introduce and study a concept of distributed fuzzymodeling. Fuzzy modeling encountered so far is predominantly of a centralizednature by being focused on the use of a single data set. In contrast to this style ofmodeling, the proposed paradigm of distributed and collaborative modeling isconcerned with distributed models which are constructed in a highly collaborativefashion. I...
متن کاملFunctional Mechanisms of Recovery after Chronic Stroke: Modeling with the Virtual Brain123
We have seen important strides in our understanding of mechanisms underlying stroke recovery, yet effective translational links between basic and applied sciences, as well as from big data to individualized therapies, are needed to truly develop a cure for stroke. We present such an approach using The Virtual Brain (TVB), a neuroinformatics platform that uses empirical neuroimaging data to crea...
متن کاملOptimal Allocation of Distributed Generation in Microgrid by Considering Load Modeling
Recent increment in carbon emission due to the dependency on fossil fuels in power generation sector is a critical issue in the last decade. The motivation to Distributed Generation (DG) in order to catch low carbon networks is rising. This research seeks to experience DG existence in local energy servicing in microgrid structure. Optimal sizing and placement of DG units is followed by this pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 71 4 شماره
صفحات -
تاریخ انتشار 2015